
Solutions to Question Sheet 3, Limits III. v1. 2019-20

Divergence

1. i) Let f be defined on a right-hand open interval of a ∈ R (i.e. on
(a, a+ η) for some η > 0). Write out the K - δ definition for

lim
x→a+

f(x) = +∞.

Let f be defined on a left-hand open interval of a ∈ R (i.e. on (a− η, a)
for some η > 0). Write out the K - δ definition for

lim
x→a−

f(x) = −∞.

ii) Let f be defined for all sufficiently large positive x. Write out the
K -X definitions for each of the following limits,

lim
x→+∞

f(x) = +∞, lim
x→+∞

f(x) = −∞,

iii) Let f be defined for all sufficiently large negative x. Write out the
K -X definitions for each of the following limits.

lim
x→−∞

f(x) = +∞, lim
x→−∞

f(x) = −∞.

Solution i. The K - δ definitions of one-sided limits being infinite are

lim
x→a+

f(x) = +∞ : ∀K > 0,∃ δ > 0,∀x : a < x < a+ δ =⇒ f(x) > K.

lim
x→a−

f(x) = −∞ : ∀K < 0,∃ δ > 0,∀x : a− δ < x < a =⇒ f(x) < K.

ii. The K -X definitions of limits at +∞ being infinite are

lim
x→+∞

f(x) = +∞ : ∀K > 0, ∃X > 0,∀x : x > X =⇒ f(x) > K.

lim
x→+∞

f(x) = −∞ : ∀K < 0,∃X > 0,∀x : x > X =⇒ f(x) < K.
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iii. The K -X definitions of limits at −∞ being infinite are

lim
x→−∞

f(x) = +∞ : ∀K > 0, ∃X < 0,∀x : x < X =⇒ f(x) > K.

lim
x→−∞

f(x) = −∞ : ∀K < 0,∃X < 0,∀x : x < X =⇒ f(x) < K.

2. i) Write

G(x) =
x

x2 − 1

as partial fractions for x 6= 1 or −1.

ii) Prove that if x > 1 then

G(x) >
1

2 (x− 1)
.

Thus verify the K - δ definition (seen in Question 1i) of

lim
x→1+

G(x) = +∞.

iii) Prove, that if 0 < x < 1 then

G(x) ≤ 1

2 (x− 1)
+

1

2
.

Thus show that the K - δ definition (seen in Question 1i) of

lim
x→1−

G(x) = −∞

is verified by choosing δ = min (1,−1/(2K − 1)) for any given K < 0.

iv) Evaluate (so there is no need to verify the definition)

lim
x→−1+

G(x) and lim
x→−1−

G(x) .

v) Evaluate
lim

x→+∞
G(x) and lim

x→−∞
G(x) ,
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if they exist.

vi) Sketch the graph of G.

Solution i) The Partial Fraction is found starting from

x

x2 − 1
=

A

x− 1
+

B

x+ 1
.

You may not have previously seen the following method to find the
unknown A and B. Multiply up by x− 1 to get

A+
B (x− 1)

x+ 1
=
x (x− 1)

(x2 − 1)
=

x

x+ 1
.

Let x→ 1 to get A = 1/2. Similarly you can get B = 1/2. Thus

G(x) =
1

2

{
1

x− 1
+

1

x+ 1

}
.

Note in the next two parts we look at the values of G(x) as x → 1
from above and below. Of the two terms in the partial fraction form
of G(x) it is the 1/(x− 1) term that dominates for such x. We are left
to simply bound the remaining factor 1/(x+ 1).

ii) To show the limit is +∞ we have to show that G(x) is larger than
any given K > 0, which we do by looking for lower bounds for G(x).

If x > 1 then x+ 1 is positive in which case

1

1 + x
is positive, i.e.

1

1 + x
> 0.

Thus we have a lower bound for G:

G(x) =
1

2

{
1

x− 1
+

1

x+ 1

}
>

1

2

{
1

x− 1
+ 0

}
=

1

2 (x− 1)
. (1)

Let K > 0 be given, choose δ = 1/(2K) > 0 and assume 1 < x < 1 + δ.
Then 0 < x− 1 < δ in which case

1

x− 1
>

1

δ
,
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and hence, from (1) ,

G(x) >
1

2 (x− 1)
>

1

2δ
=

1

2 (1/(2K))
= K.

Thus we have verified the K - δ definition (seen in Question 1) of the
one-sided limit

lim
x→1+

G(x) = +∞.

iii) To show the limit is −∞ we have to show that G (x) is less than
any given K < 0, which we do by looking for upper bounds for G(x).
Given K < 0 we are told to take δ = min (1, 1/(1− 2K)) . Assume

1 − δ < x < 1. then, since δ ≤ 1, we have 0 < x < 1 and thus
1 < x+ 1 < 2 and

1

2
<

1

x+ 1
< 1.

Thus we have an upper bound for G:

G(x) =
1

2

{
1

x− 1
+

1

x+ 1

}
<

1

2

{
1

x− 1
+ 1

}
=

1

2 (x− 1)
+

1

2
. (2)

Next δ < 1/(1− 2K) implies that

1 > x > 1− δ > 1− 1

1− 2K
= − 2K

1− 2K
.

Hence

0 > x− 1 > − 2K

1− 2K
− 1 = − 1

1− 2K
,

which, inverted, gives

1

x− 1
< − (1− 2K) .

Substituting back into (2) we find, for 1− δ < x < 1,

G(x) ≤ 1

2
{− (1− 2K) + 1} = K,
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as required. Hence we have verified the K - δ definition of

lim
x→1−

G(x) = −∞.

iv) Without detailed proofs note that for x close to −1 it is the term
1/(x+ 1) in the partial expansion of G (x) that is unbounded. The
other term, 1/(x− 1) , will be bounded.

For the right hand limit at −1, if −1 < x < 0 then x + 1 > 0, i.e.
is positive. So 1/(x+ 1) will become arbitrarily large and positive as
x approaches −1 from above and thus

lim
x→−1+

G(x) = +∞.

For the left hand limit at −1, if x < −1 then x + 1 < 0 i.e. is
negative. Thus 1/(x+ 1) will become arbitrarily large and negative as
x approaches −1 from below and hence

lim
x→−1−

G(x) = −∞.

EXTRA Though you were not asked in the question to verify the K - δ
definitions of the last two limits we do so here.

For x→ −1+ let K > 0 be given, choose δ = min (1, 1/(2K + 1)) > 0
and assume −1 < x < −1 + δ. Since δ ≤ 1 we have −1 < x < 0, i.e.

−2 < x− 1 < −1 in which case

−1

2
>

1

x− 1
> −1.

But −1 < x < −1 + δ also implies 0 < x+ 1 < δ, in which case

1

x+ 1
>

1

δ
.

Combine these lower bounds in

G(x) =
1

2

{
1

x− 1
+

1

x+ 1

}
>

1

2

{
−1 +

1

δ

}

≥ 1

2

{
−1 +

1

1/(2K + 1)

}
since δ ≤ 1/(2K + 1)

= K.
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Thus, for all K > 0 we can find a δ > 0 such that if −1 < x < −1 + δ
then G(x) ≥ K. This is the K - δ definition of limx→−1+G (x) = +∞.

For x→ −1− let K < 0 be given, choose δ = −1/ (2K) > 0 and
assume −1 − δ < x < −1. Then, with no restriction from δ we have

x− 1 < −2 in which case

−1

2
<

1

x− 1
< 0.

But −1− δ < x < −1 also implies −δ < x+ 1 < 0 in which case

1

x+ 1
< −1

δ
.

Combine these upper bounds in

G(x) =
1

2

{
1

x− 1
+

1

x+ 1

}
≤ 1

2

{
0 +

(
−1

δ

)}
= K.

Thus, for all K < 0 we can find a δ > 0 such that if −1− δ < x < −1
then G (x) ≤ K. This is the K - δ definition of limx→−1−G(x) = −∞.

(v) For large x the function G(x) “looks like”

x

x2
=

1

x
.

Hence, without detailed proofs, we can still say that the limits exist
and

lim
x→+∞

G(x) = lim
x→−∞

G(x) = 0.

vi) The graph of G is

3. Follow the example in the notes, limx→1 x/(x− 1)2 =∞, to verify the
K - δ definitions of

i) lim
x→−3

x2

(x+ 3)2
= +∞ and ii) lim

x→−3

x

(x+ 3)2
= −∞.
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−1 x

y

Solution i) To show the limit is +∞ we have to show the function is
larger than any given K > 0, which we do by looking for lower bounds
for the function.

Let K > 0 been given, choose δ = min
(

1, 2/
√
K
)
. and assume 0 <

|x+ 3| < δ.

Then

δ ≤ 1 and 0 < |x+ 3| < δ =⇒ −4 < x < −2

=⇒ 4 < x2 < 16 (3)

=⇒ x2

(x+ 3)2
>

4

(x+ 3)2
.

having divided the first inequality of (3) by the positive (x+ 3)2. Next

δ ≤ 2√
K

and 0 < |x+ 3| < δ =⇒ (x+ 3)2 ≤ 4

K

=⇒ 4

(x+ 3)2
≥ K.

Hence δ = min
(

1, 2/
√
K
)

and 0 < |x+ 3| < δ together imply

x2

(x+ 3)2
>

4

(x+ 3)2
≥ K

Thus we have verified the K - δ definition of

lim
x→−3

x2

(x+ 3)2
= +∞.
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ii) To show the limit is −∞ we have to show the function is less than
any given K < 0, which we do by looking for upper bounds for the
function.

Let K < 0 be given. Choose δ = min
(

1,
√
−2/K

)
> 0. Note that

because K < 0 we have −2/K > 0 and we can take the square root.
Assume 0 < |x+ 3| < δ.

First,

δ ≤ 1 and 0 < |x+ 3| < δ =⇒ −4 < x < −2 (4)

=⇒ x

(x+ 3)2
< − 2

(x+ 3)2
, (5)

having divided the first inequality of (4) by the positive (x+ 3)2. Next

δ ≤
√
− 2

K
and 0 < |x+ 3| < δ =⇒ (x+ 3)2 < − 2

K

=⇒ 1

(x+ 3)2
> −K

2

=⇒ − 2

(x+ 3)2
< K. (6)

Combining (5) and (6) we have, for δ = min
(

1,
√
−2/K

)
and 0 <

|x+ 3| < δ, that
x

(x+ 3)2
< − 2

(x+ 3)2
< K.

Thus we have verified the K - δ definition of

lim
x→−3

x

(x+ 3)2
= −∞.

4. Define H : R→ R by

H(x) =
1

x2 + 1
+ x.

Prove by verifying the K -X definitions that

lim
x→+∞

H(x) = +∞ and lim
x→−∞

H(x) = −∞.
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Sketch the graph of H.

Solution To prove limx→+∞H(x) = +∞, let K > 0 be given. Choose
X = K.

Assume x > X.

Remember, we hope to prove H(x) > K so we look for lower bounds
on H (x). For the present result it suffices to note that

H(x) =
1

x2 + 1
+ x > x,

where we are simplifying the expression by “throwing away” the com-
plicated part 1/ (x2 + 1) > 0 . Continuing,

H(x) > x > X = K.

Thus we have verified the K -X definition of limx→+∞H(x) = +∞.

To prove limx→−∞H(x) = −∞ let K < 0 be given. Choose X = K−1.

Assume x < X.

We hope to prove H(x) < K and so we look for upper bounds on
H(x). This means that we cannot simply throw away the 1/(x2 + 1)
term. Instead we use the fact that 1/(x2 + 1) < 1 for any x ∈ R. Then

H(x) =
1

x2 + 1
+ x < 1 + x < 1 +X = K,

by the choice of X. Thus we have verified the K -X definition of
limx→−∞H(x) = −∞.
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The graph of H(x) is

1

x

y

Limit Rules

5. Using the Limit Rules evaluate

i)

lim
x→0

3x2 + 4x+ 1

x2 + 4x+ 3
,

ii)

lim
x→∞

3x2 + 4x+ 1

x2 + 4x+ 3
,

iii)

lim
x→−1

3x2 + 4x+ 1

x2 + 4x+ 3
.

Note When using a Limit Rule you must write down which Rule you
are using and you must show that any necessary conditions of that
rule are satisfied.

Solution i) The rational function

3x2 + 4x+ 1

x2 + 4x+ 3

is well-defined at 0 (in particular the denominator is not 0) so by the
Quotient Rule for limits

lim
x→0

3x2 + 4x+ 1

x2 + 4x+ 3
=

limx→0 (3x2 + 4x+ 1)

limx→0 (x2 + 4x+ 3)
=

1

3
.
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ii) We cannot apply the Quotient Rule for limits directly since the
polynomials on the numerator and denominator diverge as x → +∞.
Instead, divide top and bottom by the largest power of x to get

lim
x→+∞

3x2 + 4x+ 1

x2 + 4x+ 3
= lim

x→+∞

3 + 4/x+ 1/x2

1 + 4/x+ 3/x2

=
limx→+∞ (3 + 4/x+ 1/x2)

limx→+∞ (1 + 4/x+ 3/x2)
(7)

=
3

1
= 3.

Here we have used the Quotient Rule at (7), allowable since both limits
exist and the one on the denominator is non-zero.

iii) We cannot apply the Quotient Rule for limits since the denominator
is 0 at x = −1. This means that the denominator has a factor of x+ 1
and in fact

x2 + 4x+ 3 = (x+ 1) (x+ 3) .

For the limit of the rational function to exist the numerator will also
have to be zero at x = −1, i.e. have a factor of x+ 1. In fact

3x2 + 4x+ 1 = (x+ 1) (3x+ 1) .

Thus

lim
x→−1

3x2 + 4x+ 1

x2 + 4x+ 3
= lim

x→−1

(x+ 1) (3x+ 1)

(x+ 1) (x+ 3)

= lim
x→−1

3x+ 1

x+ 3
.

We can now apply the Quotient Rule for limits since both limx→−1 (3x+ 1)
and limx→−1 (x+ 3) exist and the second one is non-zero. Hence

lim
x→−1

3x2 + 4x+ 1

x2 + 4x+ 3
=

limx→−1 (3x+ 1)

limx→−1 (x+ 3)
=
−2

2
= −1.
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6. (i) What is wrong with the argument:

lim
x→0

x3 sin
(π
x

)
= lim

x→0
x3 × lim

x→0
sin
(π
x

)
by the Product Rule

= 0× lim
x→0

sin
(π
x

)
= 0.

(ii) Evaluate

lim
x→0

x3 sin
(π
x

)
.

Solution i) You may only use the Product Rule for limits when both
individual limits exist. Here we know from Question 1 Sheet 2 that
limx→0 sin (π/x) does not exist, so we cannot apply the Product Rule
(even if the answer it gives is correct!)

ii) We might guess that the limit is 0.

Let ε > 0 be given, choose δ = ε1/3 and assume x : 0 < |x− 0| < δ.
Then∣∣∣x3 sin

(π
x

)
− 0
∣∣∣ =

∣∣∣x3 sin
(π
x

)∣∣∣ ≤ ∣∣x3∣∣ since |sin (π/x)| ≤ 1,

= |x|3 < δ3 since |x− 0| < δ

<
(
ε1/3
)3

= ε since δ = ε1/3.

Hence we have verified the definition of

lim
x→0

x3 sin
(π
x

)
= 0.

Alternatively you could use the Sandwich Rule on

− |x|3 ≤ x3 sin
(π
x

)
≤ |x|3 .
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Exponential and trigonometric examples

7. Recall that in the lectures we have shown that

lim
x→0

ex = 1 and lim
x→0

ex − 1

x
= 1.

Use these to evaluate the following limits which include the hyperbolic
functions.

(i)

lim
x→0

sinhx

x
,

ii)

lim
x→0

tanhx

x
,

iii)

lim
x→0

coshx− 1

x2
.

Solution i) Start from

sinhx

x
=
ex − e−x

2x
.

The guiding principle is to manipulate this so we see a function whose
limit we already know. For example (ex − 1) /x. For this reason we
‘add in zero’ in the form 0 = −1 + 1 :

sinhx

x
=

ex − 1 + 1− e−x

2x
=

1

2

(
ex − 1

x

)
+
e−x

2

(
ex − 1

x

)

=
1

2

(
ex − 1

x

)
+

1

2ex

(
ex − 1

x

)
.

Now use the Sum and Product Rules for limits to get

lim
x→0

sinhx

x
=

1

2
lim
x→0

(
ex − 1

x

)
+

1

2 limx→0 ex
lim
x→0

(
ex − 1

x

)

=
1

2
+

1

2
= 1.

13



ii) With the intention of using known results write

tanhx

x
=

sinhx

x
× 1

coshx
.

Before we apply the Quotient Rule for limits we need to note that

coshx =
ex + e−x

2
=

1

2

(
ex +

1

ex

)
−→ 1

2

(
1 +

1

1

)
= 1,

as x→ 0. Because this exists and is non-zero we can apply the Quotient
Rule to get

lim
x→0

tanhx

x
=

limx→0
sinhx
x

limx→0 coshx
=

1

1
= 1.

We have used Part i in the numerator.

iii) Apply the same idea of ‘multiplying by 1’ as used for (cosx− 1)/x2

in lectures: For x 6= 0,

coshx− 1

x2
=

coshx− 1

x2
×
(

coshx+ 1

coshx+ 1

)
=

cosh2 x− 1

x2 (coshx+ 1)

=

(
sinhx

x

)2
1

coshx+ 1
since cosh2 x− sinh2 x = 1,

−→ 12 × 1

2
as x→ 0,

by the Product and Quotient Rules and Part i. Thus

lim
x→0

coshx− 1

x2
=

1

2
.

The graphs of these functions are not particularly interesting, but I
have plotted the graph of y = sinhx/x in black, y = tanhx/x in blue
and of y = (coshx− 1) /x2 in red:
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1/2

x

y

8. i) Assuming that ex > x for all x > 0 verify the ε -X definitions of

lim
x→+∞

e−x = 0 and lim
x→−∞

ex = 0.

Deduce (using the Limit Rules) that

lim
x→+∞

tanhx = 1 and lim
x→−∞

tanhx = −1.

Sketch the graph of tanhx.

Solution i) Let ε > 0 be given. Choose X = 1/ε > 0. Assume x > X.
By the assumption in the question we have ex > x so

0 < e−x =
1

ex
<

1

x
<

1

X
=

1

(1/ε)
= ε.

Thus we have verified the ε -X definition of limx→+∞ e
−x = 0.

Let ε > 0 be given. Choose X = −1/ε < 0. Assume x < X. This
means that x is negative, so can be written as x = −y where y > −X =
1/ε. Then, as above,

ex = e−y <
1

y
<

1

(−X)
=

1

(1/ε)
= ε.

Thus we have verified the ε -X definition of limx→−∞ e
x = 0.

ii) By definition

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
.
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• For x→ +∞ divide top and bottom by ex so

tanhx =
1− e−2x

1 + e−2x
.

By the Product Rule for limits, part i of this question gives

lim
x→+∞

e−2x = lim
x→+∞

(
e−x
)2

=

(
lim

x→+∞
e−x
)2

= 0.

Then, by the Quotient Rule for limits,

lim
x→+∞

tanh =
limx→+∞ (1− e−2x)
limx→+∞ (1 + e−2x)

= 1.

• For x→ −∞ divide top and bottom by e−x so

tanhx =
e2x − 1

e2x + 1
.

Again the Product Rule for limits and part i gives

lim
x→−∞

e2x = 0.

Then, by the Quotient Rule for limits,

lim
x→+∞

tanh =
limx→+∞ (e2x − 1)

limx→+∞ (e2x + 1)
= 1.
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Finally, we can use the results just found to plot the graph of y =
tanhx :

-1

-0.5

0

0.5

1

-6 -4 -2 2 4 6x

Additional Questions

9. i. Prove that ∣∣∣∣ex − 1− x− x2

2
− x3

6

∣∣∣∣ < 2

4!

∣∣x4∣∣
for |x| < 1/2.

Hint Use the method seen in the notes where it was shown that
|ex − 1− x| < |x2| for |x| < 1/2.

ii. Deduce

lim
x→0

ex − 1− x− x2/2
x3

=
1

6
.

iii. Use Part ii. to evaluate

lim
x→0

sinhx− x
x3

.

Solution i) Start from the definition of an infinite series as the limit
of the sequence of partial sums, so

ex − 1− x− x2

2
− x3

3!
= lim

N→∞

N∑
k=4

xk

k!
= x4 lim

N→∞

N−4∑
j=0

xj

(j + 4)!
. (8)
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Then, by the triangle inequality, (applicable since we have a finite
sum), ∣∣∣∣∣

N−4∑
j=0

xj

(j + 4)!

∣∣∣∣∣ ≤
N−4∑
j=0

|x|j

(j + 4)!
≤ 1

4!

N−4∑
j=0

|x|j

since (j + 4)! ≥ 4! for all j ≥ 0,

=
1

4!

(
1− |x|N−3

1− |x|

)
,

on summing the Geometric Series, allowable when |x| 6= 1. In fact we
have |x| < 1/2 < 1, which means

1− |x|N−3

1− |x|
≤ 1

1− |x|
<

1

1− 1/2
= 2.

Hence ∣∣∣∣∣
N−3∑
j=0

xj

(j + 4)!

∣∣∣∣∣ ≤ 2

4!

for all N ≥ 0. Therefore, since the limit of these partial sums exists
the limit must satisfy ∣∣∣∣∣ lim

N→∞

N−3∑
j=0

xj

(j + 4)!

∣∣∣∣∣ ≤ 2

4!
.

Combined with (8) we have∣∣∣∣ex − 1− x− x2

2
− x3

3!

∣∣∣∣ ≤ 2

4!
|x|4 .

ii) Divide through the result of part i by |x3| to get∣∣∣∣ex − 1− x− x2/2
x3

− 1

6

∣∣∣∣ < 2

4!
|x| < |x| (9)

for |x| < 1/2.
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To prove the limit in the question we can verify the definition. Let
ε > 0 be given, choose δ = min (1/2, ε) and assume 0 < |x− 0| < δ.

Since δ ≤ 1/2, the inequality (9) holds for such x. Thus∣∣∣∣ex − 1− x− x2/2
x3

− 1

6

∣∣∣∣ < |x| < δ ≤ ε.

Hence we have verified the ε - δ definition of

lim
x→0

ex − 1− x− x2/2
x3

=
1

6
. (10)

Alternatively we can use the Sandwich Rule for (9) opens out as

1

6
− |x| < ex − 1− x− x2/2

x3
<

1

6
+ |x| .

Let x → 0 when the upper and lower bound → 1/6. Thus, by the
Sandwich Rule, (10) follows.

iii) From the definition of sinhx we have

sinhx− x
x3

=
ex − e−x − 2x

2x3
.

This has to be manipulated so that we see ex − 1 − x − x2/2 and can
thus use (10). Do this by “adding in zero” in the form

0 = −x2/2−
(
− (−x)2 2

)
,

to get

ex − e−x − 2x

2x3
=

(ex − 1− x− x2/2)− (e−x − 1− (−x)− (−x)2 /2)

2x3

=
(ex − 1− x− x2/2)

2x3
+

(e−x − 1− (−x)− (−x)2 /2)

2 (−x)3
.
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Let x → 0 (in which case −x → 0) when, by the assumption of the
question, we get

lim
x→0

sinhx− x
x3

=
1

2
lim
x→0

(ex − 1− x− x2/2)

x3

+
1

2
lim
−x→0

(e−x − 1− (−x)− (−x)2 /2)

2 (−x)3

=
1

2
× 1

6
+

1

2
× 1

6
=

1

6
.

Again, the graph of y = (sinhx− x) /x3 is not particularly ‘exciting’:

-1.0 -0.5 0.0 0.5 1.0

0.168

0.170

0.172

0.174

0.176

10. Recall that in the lectures we have shown that

lim
θ→0

sin θ

θ
= 1

Use this to evaluate (without using L’Hôpital’s Rule)

i)

lim
θ→0

θ

tan θ
,

ii)

lim
θ→0

sin θ − tan θ

θ3
.

Solution i) Again guided by the limits we already know write

lim
θ→0

θ

tan θ
= lim

θ→0

θ cos θ

sin θ
= lim

θ→0

cos θ(
sin θ
θ

) =
limθ→0 cos θ

limθ→0
sin θ
θ

,
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by Quotient Rule for limits, allowable since both limits exist and the
limit on the denominator is non-zero. Hence

lim
θ→0

θ

tan θ
=

1

1
= 1.

Graphically, y = x/ tanx :

−π/2 π/2−π−2π π 2π

1

x

y

ii) The limit we already know from lectures is of (cos θ − 1) /θ2 so write

sin θ − tan θ

θ3
=

tan θ

θ

(
cos θ − 1

θ2

)
.

The “trick” used in lectures to evaluate the limit of this it is to multiply
top and bottom by cos θ + 1 to get

tan θ

θ

(
cos2 θ − 1

θ2

)
1

cos θ + 1
= −tan θ

θ

(
sin θ

θ

)2
1

cos θ + 1

= − 1

cos θ

(
sin θ

θ

)3
1

cos θ + 1
.

Use the Product and Quotient Rules for limits to deduce

lim
θ→0

sin θ − tan θ

θ3
= −1

2
.
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Graphically, y = (sinx− tanx) /x2 :

−π/2 π/2

−1/2

x

y
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