## Divergence

1. i) Let $f$ be defined on a right-hand open interval of $a \in \mathbb{R}$ (i.e. on $(a, a+\eta)$ for some $\eta>0)$. Write out the $K-\delta$ definition for

$$
\lim _{x \rightarrow a+} f(x)=+\infty
$$

Let $f$ be defined on a left-hand open interval of $a \in \mathbb{R}$ (i.e. on $(a-\eta, a)$ for some $\eta>0$ ). Write out the $K-\delta$ definition for

$$
\lim _{x \rightarrow a-} f(x)=-\infty
$$

ii) Let $f$ be defined for all sufficiently large positive $x$. Write out the $K-X$ definitions for each of the following limits,

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty, \quad \lim _{x \rightarrow+\infty} f(x)=-\infty
$$

iii) Let $f$ be defined for all sufficiently large negative $x$. Write out the $K-X$ definitions for each of the following limits.

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty, \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

Solution i. The $K-\delta$ definitions of one-sided limits being infinite are

$$
\begin{aligned}
& \lim _{x \rightarrow a+} f(x)=+\infty: \forall K>0, \exists \delta>0, \forall x: a<x<a+\delta \Longrightarrow f(x)>K \\
& \lim _{x \rightarrow a-} f(x)=-\infty: \forall K<0, \exists \delta>0, \forall x: a-\delta<x<a \Longrightarrow f(x)<K
\end{aligned}
$$

ii. The $K-X$ definitions of limits at $+\infty$ being infinite are

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =+\infty: \forall K>0, \exists X>0, \forall x: x>X \Longrightarrow f(x)>K \\
\lim _{x \rightarrow+\infty} f(x) & =-\infty: \forall K<0, \exists X>0, \forall x: x>X \Longrightarrow f(x)<K
\end{aligned}
$$

iii. The $K-X$ definitions of limits at $-\infty$ being infinite are

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=+\infty: \forall K>0, \exists X<0, \forall x: x<X \Longrightarrow f(x)>K \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty: \forall K<0, \exists X<0, \forall x: x<X \Longrightarrow f(x)<K
\end{aligned}
$$

2. i) Write

$$
G(x)=\frac{x}{x^{2}-1}
$$

as partial fractions for $x \neq 1$ or -1 .
ii) Prove that if $x>1$ then

$$
G(x)>\frac{1}{2(x-1)} .
$$

Thus verify the $K-\delta$ definition (seen in Question 1i) of

$$
\lim _{x \rightarrow 1+} G(x)=+\infty
$$

iii) Prove, that if $0<x<1$ then

$$
G(x) \leq \frac{1}{2(x-1)}+\frac{1}{2}
$$

Thus show that the $K-\delta$ definition (seen in Question 1i) of

$$
\lim _{x \rightarrow 1-} G(x)=-\infty
$$

is verified by choosing $\delta=\min (1,-1 /(2 K-1))$ for any given $K<0$.
iv) Evaluate (so there is no need to verify the definition)

$$
\lim _{x \rightarrow-1+} G(x) \quad \text { and } \quad \lim _{x \rightarrow-1-} G(x) .
$$

v) Evaluate

$$
\lim _{x \rightarrow+\infty} G(x) \quad \text { and } \quad \lim _{x \rightarrow-\infty} G(x)
$$

if they exist.
vi) Sketch the graph of $G$.

Solution i) The Partial Fraction is found starting from

$$
\frac{x}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1} .
$$

You may not have previously seen the following method to find the unknown $A$ and $B$. Multiply up by $x-1$ to get

$$
A+\frac{B(x-1)}{x+1}=\frac{x(x-1)}{\left(x^{2}-1\right)}=\frac{x}{x+1} .
$$

Let $x \rightarrow 1$ to get $A=1 / 2$. Similarly you can get $B=1 / 2$. Thus

$$
G(x)=\frac{1}{2}\left\{\frac{1}{x-1}+\frac{1}{x+1}\right\} .
$$

Note in the next two parts we look at the values of $G(x)$ as $x \rightarrow 1$ from above and below. Of the two terms in the partial fraction form of $G(x)$ it is the $1 /(x-1)$ term that dominates for such $x$. We are left to simply bound the remaining factor $1 /(x+1)$.
ii) To show the limit is $+\infty$ we have to show that $G(x)$ is larger than any given $K>0$, which we do by looking for lower bounds for $G(x)$.
If $x>1$ then $x+1$ is positive in which case

$$
\frac{1}{1+x} \text { is positive, i.e. } \frac{1}{1+x}>0
$$

Thus we have a lower bound for $G$ :

$$
\begin{equation*}
G(x)=\frac{1}{2}\left\{\frac{1}{x-1}+\frac{1}{x+1}\right\}>\frac{1}{2}\left\{\frac{1}{x-1}+0\right\}=\frac{1}{2(x-1)} \tag{1}
\end{equation*}
$$

Let $K>0$ be given, choose $\delta=1 /(2 K)>0$ and assume $1<x<1+\delta$. Then $0<x-1<\delta$ in which case

$$
\frac{1}{x-1}>\frac{1}{\delta}
$$

and hence, from (1),

$$
G(x)>\frac{1}{2(x-1)}>\frac{1}{2 \delta}=\frac{1}{2(1 /(2 K))}=K .
$$

Thus we have verified the $K-\delta$ definition (seen in Question 1) of the one-sided limit

$$
\lim _{x \rightarrow 1+} G(x)=+\infty
$$

iii) To show the limit is $-\infty$ we have to show that $G(x)$ is less than any given $K<0$, which we do by looking for upper bounds for $G(x)$. Given $K<0$ we are told to take $\delta=\min (1,1 /(1-2 K))$. Assume $1-\delta<x<1$. then, since $\delta \leq 1$, we have $0<x<1$ and thus $1<x+1<2$ and

$$
\frac{1}{2}<\frac{1}{x+1}<1
$$

Thus we have an upper bound for $G$ :

$$
\begin{equation*}
G(x)=\frac{1}{2}\left\{\frac{1}{x-1}+\frac{1}{x+1}\right\}<\frac{1}{2}\left\{\frac{1}{x-1}+1\right\}=\frac{1}{2(x-1)}+\frac{1}{2} . \tag{2}
\end{equation*}
$$

Next $\delta<1 /(1-2 K)$ implies that

$$
1>x>1-\delta>1-\frac{1}{1-2 K}=-\frac{2 K}{1-2 K}
$$

Hence

$$
0>x-1>-\frac{2 K}{1-2 K}-1=-\frac{1}{1-2 K},
$$

which, inverted, gives

$$
\frac{1}{x-1}<-(1-2 K) .
$$

Substituting back into (2) we find, for $1-\delta<x<1$,

$$
G(x) \leq \frac{1}{2}\{-(1-2 K)+1\}=K
$$

as required. Hence we have verified the $K-\delta$ definition of

$$
\lim _{x \rightarrow 1-} G(x)=-\infty
$$

iv) Without detailed proofs note that for $x$ close to -1 it is the term $1 /(x+1)$ in the partial expansion of $G(x)$ that is unbounded. The other term, $1 /(x-1)$, will be bounded.

For the right hand limit at -1 , if $-1<x<0$ then $x+1>0$, i.e. is positive. So $1 /(x+1)$ will become arbitrarily large and positive as $x$ approaches -1 from above and thus

$$
\lim _{x \rightarrow-1+} G(x)=+\infty
$$

For the left hand limit at -1 , if $x<-1$ then $x+1<0$ i.e. is negative. Thus $1 /(x+1)$ will become arbitrarily large and negative as $x$ approaches -1 from below and hence

$$
\lim _{x \rightarrow-1-} G(x)=-\infty .
$$

EXTRA Though you were not asked in the question to verify the $K-\delta$ definitions of the last two limits we do so here.

For $\mathbf{x} \rightarrow \mathbf{- 1}+$ let $K>0$ be given, choose $\delta=\min (1,1 /(2 K+1))>0$ and assume $-1<x<-1+\delta$. Since $\delta \leq 1$ we have $-1<x<0$, i.e. $-2<x-1<-1$ in which case

$$
-\frac{1}{2}>\frac{1}{x-1}>-1
$$

But $-1<x<-1+\delta$ also implies $0<x+1<\delta$, in which case

$$
\frac{1}{x+1}>\frac{1}{\delta}
$$

Combine these lower bounds in

$$
\begin{aligned}
G(x) & =\frac{1}{2}\left\{\frac{1}{x-1}+\frac{1}{x+1}\right\}>\frac{1}{2}\left\{-1+\frac{1}{\delta}\right\} \\
& \geq \frac{1}{2}\left\{-1+\frac{1}{1 /(2 K+1)}\right\} \quad \text { since } \delta \leq 1 /(2 K+1) \\
& =K
\end{aligned}
$$

Thus, for all $K>0$ we can find a $\delta>0$ such that if $-1<x<-1+\delta$ then $G(x) \geq K$. This is the $K-\delta$ definition of $\lim _{x \rightarrow-1+} G(x)=+\infty$.

For $\mathbf{x} \rightarrow-\mathbf{1}$ - let $K<0$ be given, choose $\delta=-1 /(2 K)>0$ and assume $-1-\delta<x<-1$. Then, with no restriction from $\delta$ we have $x-1<-2$ in which case

$$
-\frac{1}{2}<\frac{1}{x-1}<0 .
$$

But $-1-\delta<x<-1$ also implies $-\delta<x+1<0$ in which case

$$
\frac{1}{x+1}<-\frac{1}{\delta}
$$

Combine these upper bounds in

$$
G(x)=\frac{1}{2}\left\{\frac{1}{x-1}+\frac{1}{x+1}\right\} \leq \frac{1}{2}\left\{0+\left(-\frac{1}{\delta}\right)\right\}=K .
$$

Thus, for all $K<0$ we can find a $\delta>0$ such that if $-1-\delta<x<-1$ then $G(x) \leq K$. This is the $K-\delta$ definition of $\lim _{x \rightarrow-1-} G(x)=-\infty$.
(v) For large $x$ the function $G(x)$ "looks like"

$$
\frac{x}{x^{2}}=\frac{1}{x} .
$$

Hence, without detailed proofs, we can still say that the limits exist and

$$
\lim _{x \rightarrow+\infty} G(x)=\lim _{x \rightarrow-\infty} G(x)=0 .
$$

vi) The graph of $G$ is
3. Follow the example in the notes, $\lim _{x \rightarrow 1} x /(x-1)^{2}=\infty$, to verify the $K-\delta$ definitions of
i) $\lim _{x \rightarrow-3} \frac{x^{2}}{(x+3)^{2}}=+\infty \quad$ and
ii) $\lim _{x \rightarrow-3} \frac{x}{(x+3)^{2}}=-\infty$.


Solution i) To show the limit is $+\infty$ we have to show the function is larger than any given $K>0$, which we do by looking for lower bounds for the function.
Let $K>0$ been given, choose $\delta=\min (1,2 / \sqrt{K})$. and assume $0<$ $|x+3|<\delta$.

Then

$$
\begin{align*}
\delta \leq 1 \text { and } 0<|x+3|<\delta & \Longrightarrow-4<x<-2 \\
& \Longrightarrow 4<x^{2}<16  \tag{3}\\
& \Longrightarrow \frac{x^{2}}{(x+3)^{2}}>\frac{4}{(x+3)^{2}}
\end{align*}
$$

having divided the first inequality of $(3)$ by the positive $(x+3)^{2}$. Next

$$
\begin{aligned}
\delta \leq \frac{2}{\sqrt{K}} \text { and } 0<|x+3|<\delta & \Longrightarrow(x+3)^{2} \leq \frac{4}{K} \\
& \Longrightarrow \frac{4}{(x+3)^{2}} \geq K
\end{aligned}
$$

Hence $\delta=\min (1,2 / \sqrt{K})$ and $0<|x+3|<\delta$ together imply

$$
\frac{x^{2}}{(x+3)^{2}}>\frac{4}{(x+3)^{2}} \geq K
$$

Thus we have verified the $K-\delta$ definition of

$$
\lim _{x \rightarrow-3} \frac{x^{2}}{(x+3)^{2}}=+\infty
$$

ii) To show the limit is $-\infty$ we have to show the function is less than any given $K<0$, which we do by looking for upper bounds for the function.
Let $K<0$ be given. Choose $\delta=\min (1, \sqrt{-2 / K})>0$. Note that because $K<0$ we have $-2 / K>0$ and we can take the square root. Assume $0<|x+3|<\delta$.

First,

$$
\begin{align*}
\delta \leq 1 \text { and } 0<|x+3|<\delta & \Longrightarrow-4<x<-2  \tag{4}\\
& \Longrightarrow \frac{x}{(x+3)^{2}}<-\frac{2}{(x+3)^{2}}, \tag{5}
\end{align*}
$$

having divided the first inequality of (4) by the positive $(x+3)^{2}$. Next

$$
\begin{align*}
\delta \leq \sqrt{-\frac{2}{K}} \text { and } 0<|x+3|<\delta & \Longrightarrow(x+3)^{2}<-\frac{2}{K} \\
& \Longrightarrow \frac{1}{(x+3)^{2}}>-\frac{K}{2} \\
& \Longrightarrow-\frac{2}{(x+3)^{2}}<K \tag{6}
\end{align*}
$$

Combining (5) and (6) we have, for $\delta=\min (1, \sqrt{-2 / K})$ and $0<$ $|x+3|<\delta$, that

$$
\frac{x}{(x+3)^{2}}<-\frac{2}{(x+3)^{2}}<K .
$$

Thus we have verified the $K-\delta$ definition of

$$
\lim _{x \rightarrow-3} \frac{x}{(x+3)^{2}}=-\infty
$$

4. Define $H: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H(x)=\frac{1}{x^{2}+1}+x .
$$

Prove by verifying the $K-X$ definitions that

$$
\lim _{x \rightarrow+\infty} H(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty} H(x)=-\infty
$$

Sketch the graph of $H$.
Solution To prove $\lim _{x \rightarrow+\infty} H(x)=+\infty$, let $K>0$ be given. Choose $X=K$.

Assume $x>X$.
Remember, we hope to prove $H(x)>K$ so we look for lower bounds on $H(x)$. For the present result it suffices to note that

$$
H(x)=\frac{1}{x^{2}+1}+x>x,
$$

where we are simplifying the expression by "throwing away" the complicated part $1 /\left(x^{2}+1\right)>0$. Continuing,

$$
H(x)>x>X=K
$$

Thus we have verified the $K-X$ definition of $\lim _{x \rightarrow+\infty} H(x)=+\infty$.

To prove $\lim _{x \rightarrow-\infty} H(x)=-\infty$ let $K<0$ be given. Choose $X=K-1$.
Assume $x<X$.
We hope to prove $H(x)<K$ and so we look for upper bounds on $H(x)$. This means that we cannot simply throw away the $1 /\left(x^{2}+1\right)$ term. Instead we use the fact that $1 /\left(x^{2}+1\right)<1$ for any $x \in \mathbb{R}$. Then

$$
H(x)=\frac{1}{x^{2}+1}+x<1+x<1+X=K
$$

by the choice of $X$. Thus we have verified the $K-X$ definition of $\lim _{x \rightarrow-\infty} H(x)=-\infty$.

The graph of $H(x)$ is


## Limit Rules

5. Using the Limit Rules evaluate
i)

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}
$$

ii)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}
$$

iii)

$$
\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}
$$

Note When using a Limit Rule you must write down which Rule you are using and you must show that any necessary conditions of that rule are satisfied.

Solution i) The rational function

$$
\frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}
$$

is well-defined at 0 (in particular the denominator is not 0 ) so by the Quotient Rule for limits

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}=\frac{\lim _{x \rightarrow 0}\left(3 x^{2}+4 x+1\right)}{\lim _{x \rightarrow 0}\left(x^{2}+4 x+3\right)}=\frac{1}{3} .
$$

ii) We cannot apply the Quotient Rule for limits directly since the polynomials on the numerator and denominator diverge as $x \rightarrow+\infty$. Instead, divide top and bottom by the largest power of $x$ to get

$$
\begin{align*}
\lim _{x \rightarrow+\infty} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3} & =\lim _{x \rightarrow+\infty} \frac{3+4 / x+1 / x^{2}}{1+4 / x+3 / x^{2}} \\
& =\frac{\lim _{x \rightarrow+\infty}\left(3+4 / x+1 / x^{2}\right)}{\lim _{x \rightarrow+\infty}\left(1+4 / x+3 / x^{2}\right)}  \tag{7}\\
& =\frac{3}{1}=3
\end{align*}
$$

Here we have used the Quotient Rule at (7), allowable since both limits exist and the one on the denominator is non-zero.
iii) We cannot apply the Quotient Rule for limits since the denominator is 0 at $x=-1$. This means that the denominator has a factor of $x+1$ and in fact

$$
x^{2}+4 x+3=(x+1)(x+3) .
$$

For the limit of the rational function to exist the numerator will also have to be zero at $x=-1$, i.e. have a factor of $x+1$. In fact

$$
3 x^{2}+4 x+1=(x+1)(3 x+1) .
$$

Thus

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3} & =\lim _{x \rightarrow-1} \frac{(x+1)(3 x+1)}{(x+1)(x+3)} \\
& =\lim _{x \rightarrow-1} \frac{3 x+1}{x+3}
\end{aligned}
$$

We can now apply the Quotient Rule for limits since both $\lim _{x \rightarrow-1}(3 x+1)$ and $\lim _{x \rightarrow-1}(x+3)$ exist and the second one is non-zero. Hence

$$
\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}=\frac{\lim _{x \rightarrow-1}(3 x+1)}{\lim _{x \rightarrow-1}(x+3)}=\frac{-2}{2}=-1 .
$$

6. (i) What is wrong with the argument:

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)= & \lim _{x \rightarrow 0} x^{3} \times \lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right) \\
& \quad \text { by the Product Rule } \\
= & 0 \times \lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right) \\
= & 0
\end{aligned}
$$

(ii) Evaluate

$$
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)
$$

Solution i) You may only use the Product Rule for limits when both individual limits exist. Here we know from Question 1 Sheet 2 that $\lim _{x \rightarrow 0} \sin (\pi / x)$ does not exist, so we cannot apply the Product Rule (even if the answer it gives is correct!)
ii) We might guess that the limit is 0 .

Let $\varepsilon>0$ be given, choose $\delta=\varepsilon^{1 / 3}$ and assume $x: 0<|x-0|<\delta$. Then

$$
\begin{aligned}
\left|x^{3} \sin \left(\frac{\pi}{x}\right)-0\right|=\left|x^{3} \sin \left(\frac{\pi}{x}\right)\right| & \leq\left|x^{3}\right| \quad \text { since }|\sin (\pi / x)| \leq 1 \\
& =|x|^{3}<\delta^{3} \quad \text { since }|x-0|<\delta \\
& <\left(\varepsilon^{1 / 3}\right)^{3}=\varepsilon \quad \text { since } \delta=\varepsilon^{1 / 3}
\end{aligned}
$$

Hence we have verified the definition of

$$
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)=0
$$

Alternatively you could use the Sandwich Rule on

$$
-|x|^{3} \leq x^{3} \sin \left(\frac{\pi}{x}\right) \leq|x|^{3} .
$$

## Exponential and trigonometric examples

7. Recall that in the lectures we have shown that

$$
\lim _{x \rightarrow 0} e^{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

Use these to evaluate the following limits which include the hyperbolic functions.
(i)

$$
\lim _{x \rightarrow 0} \frac{\sinh x}{x},
$$

ii)

$$
\lim _{x \rightarrow 0} \frac{\tanh x}{x},
$$

iii)

$$
\lim _{x \rightarrow 0} \frac{\cosh x-1}{x^{2}}
$$

Solution i) Start from

$$
\frac{\sinh x}{x}=\frac{e^{x}-e^{-x}}{2 x}
$$

The guiding principle is to manipulate this so we see a function whose limit we already know. For example $\left(e^{x}-1\right) / x$. For this reason we 'add in zero' in the form $0=-1+1$ :

$$
\begin{aligned}
\frac{\sinh x}{x} & =\frac{e^{x}-1+1-e^{-x}}{2 x}=\frac{1}{2}\left(\frac{e^{x}-1}{x}\right)+\frac{e^{-x}}{2}\left(\frac{e^{x}-1}{x}\right) \\
& =\frac{1}{2}\left(\frac{e^{x}-1}{x}\right)+\frac{1}{2 e^{x}}\left(\frac{e^{x}-1}{x}\right) .
\end{aligned}
$$

Now use the Sum and Product Rules for limits to get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sinh x}{x} & =\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)+\frac{1}{2 \lim _{x \rightarrow 0} e^{x}} \lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right) \\
& =\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

ii) With the intention of using known results write

$$
\frac{\tanh x}{x}=\frac{\sinh x}{x} \times \frac{1}{\cosh x} .
$$

Before we apply the Quotient Rule for limits we need to note that

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}=\frac{1}{2}\left(e^{x}+\frac{1}{e^{x}}\right) \longrightarrow \frac{1}{2}\left(1+\frac{1}{1}\right)=1,
$$

as $x \rightarrow 0$. Because this exists and is non-zero we can apply the Quotient Rule to get

$$
\lim _{x \rightarrow 0} \frac{\tanh x}{x}=\frac{\lim _{x \rightarrow 0} \frac{\sinh x}{x}}{\lim _{x \rightarrow 0} \cosh x}=\frac{1}{1}=1 .
$$

We have used Part i in the numerator.
iii) Apply the same idea of 'multiplying by 1 ' as used for $(\cos x-1) / x^{2}$ in lectures: For $x \neq 0$,

$$
\begin{aligned}
\frac{\cosh x-1}{x^{2}} & =\frac{\cosh x-1}{x^{2}} \times\left(\frac{\cosh x+1}{\cosh x+1}\right)=\frac{\cosh ^{2} x-1}{x^{2}(\cosh x+1)} \\
& =\left(\frac{\sinh x}{x}\right)^{2} \frac{1}{\cosh x+1} \quad \text { since } \cosh ^{2} x-\sinh ^{2} x=1 \\
& \longrightarrow 1^{2} \times \frac{1}{2} \text { as } x \rightarrow 0
\end{aligned}
$$

by the Product and Quotient Rules and Part i. Thus

$$
\lim _{x \rightarrow 0} \frac{\cosh x-1}{x^{2}}=\frac{1}{2} .
$$

The graphs of these functions are not particularly interesting, but I have plotted the graph of $y=\sinh x / x$ in black, $y=\tanh x / x$ in blue and of $y=(\cosh x-1) / x^{2}$ in red:

8. i) Assuming that $e^{x}>x$ for all $x>0$ verify the $\varepsilon-X$ definitions of

$$
\lim _{x \rightarrow+\infty} e^{-x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} e^{x}=0
$$

Deduce (using the Limit Rules) that

$$
\lim _{x \rightarrow+\infty} \tanh x=1 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \tanh x=-1
$$

Sketch the graph of $\tanh x$.
Solution i) Let $\varepsilon>0$ be given. Choose $X=1 / \varepsilon>0$. Assume $x>X$. By the assumption in the question we have $e^{x}>x$ so

$$
0<e^{-x}=\frac{1}{e^{x}}<\frac{1}{x}<\frac{1}{X}=\frac{1}{(1 / \varepsilon)}=\varepsilon .
$$

Thus we have verified the $\varepsilon-X$ definition of $\lim _{x \rightarrow+\infty} e^{-x}=0$.
Let $\varepsilon>0$ be given. Choose $X=-1 / \varepsilon<0$. Assume $x<X$. This means that $x$ is negative, so can be written as $x=-y$ where $y>-X=$ $1 / \varepsilon$. Then, as above,

$$
e^{x}=e^{-y}<\frac{1}{y}<\frac{1}{(-X)}=\frac{1}{(1 / \varepsilon)}=\varepsilon .
$$

Thus we have verified the $\varepsilon-X$ definition of $\lim _{x \rightarrow-\infty} e^{x}=0$.
ii) By definition

$$
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} .
$$

- For $x \rightarrow+\infty$ divide top and bottom by $e^{x}$ so

$$
\tanh x=\frac{1-e^{-2 x}}{1+e^{-2 x}}
$$

By the Product Rule for limits, part i of this question gives

$$
\lim _{x \rightarrow+\infty} e^{-2 x}=\lim _{x \rightarrow+\infty}\left(e^{-x}\right)^{2}=\left(\lim _{x \rightarrow+\infty} e^{-x}\right)^{2}=0
$$

Then, by the Quotient Rule for limits,

$$
\lim _{x \rightarrow+\infty} \tanh =\frac{\lim _{x \rightarrow+\infty}\left(1-e^{-2 x}\right)}{\lim _{x \rightarrow+\infty}\left(1+e^{-2 x}\right)}=1
$$

- For $x \rightarrow-\infty$ divide top and bottom by $e^{-x}$ so

$$
\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}
$$

Again the Product Rule for limits and part i gives

$$
\lim _{x \rightarrow-\infty} e^{2 x}=0
$$

Then, by the Quotient Rule for limits,

$$
\lim _{x \rightarrow+\infty} \tanh =\frac{\lim _{x \rightarrow+\infty}\left(e^{2 x}-1\right)}{\lim _{x \rightarrow+\infty}\left(e^{2 x}+1\right)}=1
$$

Finally, we can use the results just found to plot the graph of $y=$ $\tanh x$ :


## Additional Questions

9. i. Prove that

$$
\left|e^{x}-1-x-\frac{x^{2}}{2}-\frac{x^{3}}{6}\right|<\frac{2}{4!}\left|x^{4}\right|
$$

for $|x|<1 / 2$.
Hint Use the method seen in the notes where it was shown that $\left|e^{x}-1-x\right|<\left|x^{2}\right|$ for $|x|<1 / 2$.
ii. Deduce

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x-x^{2} / 2}{x^{3}}=\frac{1}{6}
$$

iii. Use Part ii. to evaluate

$$
\lim _{x \rightarrow 0} \frac{\sinh x-x}{x^{3}}
$$

Solution i) Start from the definition of an infinite series as the limit of the sequence of partial sums, so

$$
\begin{equation*}
e^{x}-1-x-\frac{x^{2}}{2}-\frac{x^{3}}{3!}=\lim _{N \rightarrow \infty} \sum_{k=4}^{N} \frac{x^{k}}{k!}=x^{4} \lim _{N \rightarrow \infty} \sum_{j=0}^{N-4} \frac{x^{j}}{(j+4)!} \tag{8}
\end{equation*}
$$

Then, by the triangle inequality, (applicable since we have a finite sum),

$$
\begin{aligned}
\left|\sum_{j=0}^{N-4} \frac{x^{j}}{(j+4)!}\right|= & \sum_{j=0}^{N-4} \frac{|x|^{j}}{(j+4)!} \leq \frac{1}{4!} \sum_{j=0}^{N-4}|x|^{j} \\
& \quad \text { since }(j+4)!\geq 4!\text { for all } j \geq 0, \\
= & \frac{1}{4!}\left(\frac{1-|x|^{N-3}}{1-|x|}\right),
\end{aligned}
$$

on summing the Geometric Series, allowable when $|x| \neq 1$. In fact we have $|x|<1 / 2<1$, which means

$$
\frac{1-|x|^{N-3}}{1-|x|} \leq \frac{1}{1-|x|}<\frac{1}{1-1 / 2}=2 .
$$

Hence

$$
\left|\sum_{j=0}^{N-3} \frac{x^{j}}{(j+4)!}\right| \leq \frac{2}{4!}
$$

for all $N \geq 0$. Therefore, since the limit of these partial sums exists the limit must satisfy

$$
\left|\lim _{N \rightarrow \infty} \sum_{j=0}^{N-3} \frac{x^{j}}{(j+4)!}\right| \leq \frac{2}{4!} .
$$

Combined with (8) we have

$$
\left|e^{x}-1-x-\frac{x^{2}}{2}-\frac{x^{3}}{3!}\right| \leq \frac{2}{4!}|x|^{4}
$$

ii) Divide through the result of part i by $\left|x^{3}\right|$ to get

$$
\begin{equation*}
\left|\frac{e^{x}-1-x-x^{2} / 2}{x^{3}}-\frac{1}{6}\right|<\frac{2}{4!}|x|<|x| \tag{9}
\end{equation*}
$$

for $|x|<1 / 2$.

To prove the limit in the question we can verify the definition. Let $\varepsilon>0$ be given, choose $\delta=\min (1 / 2, \varepsilon)$ and assume $0<|x-0|<\delta$.

Since $\delta \leq 1 / 2$, the inequality (9) holds for such $x$. Thus

$$
\left|\frac{e^{x}-1-x-x^{2} / 2}{x^{3}}-\frac{1}{6}\right|<|x|<\delta \leq \varepsilon .
$$

Hence we have verified the $\varepsilon-\delta$ definition of

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x}-1-x-x^{2} / 2}{x^{3}}=\frac{1}{6} \tag{10}
\end{equation*}
$$

Alternatively we can use the Sandwich Rule for (9) opens out as

$$
\frac{1}{6}-|x|<\frac{e^{x}-1-x-x^{2} / 2}{x^{3}}<\frac{1}{6}+|x| .
$$

Let $x \rightarrow 0$ when the upper and lower bound $\rightarrow 1 / 6$. Thus, by the Sandwich Rule, (10) follows.
iii) From the definition of $\sinh x$ we have

$$
\frac{\sinh x-x}{x^{3}}=\frac{e^{x}-e^{-x}-2 x}{2 x^{3}}
$$

This has to be manipulated so that we see $e^{x}-1-x-x^{2} / 2$ and can thus use (10). Do this by "adding in zero" in the form

$$
0=-x^{2} / 2-\left(-(-x)^{2} 2\right)
$$

to get

$$
\begin{aligned}
\frac{e^{x}-e^{-x}-2 x}{2 x^{3}} & =\frac{\left(e^{x}-1-x-x^{2} / 2\right)-\left(e^{-x}-1-(-x)-(-x)^{2} / 2\right)}{2 x^{3}} \\
& =\frac{\left(e^{x}-1-x-x^{2} / 2\right)}{2 x^{3}}+\frac{\left(e^{-x}-1-(-x)-(-x)^{2} / 2\right)}{2(-x)^{3}}
\end{aligned}
$$

Let $x \rightarrow 0$ (in which case $-x \rightarrow 0$ ) when, by the assumption of the question, we get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sinh x-x}{x^{3}}= & \frac{1}{2} \lim _{x \rightarrow 0} \frac{\left(e^{x}-1-x-x^{2} / 2\right)}{x^{3}} \\
& +\frac{1}{2} \lim _{-x \rightarrow 0} \frac{\left(e^{-x}-1-(-x)-(-x)^{2} / 2\right)}{2(-x)^{3}} \\
= & \frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{1}{6}=\frac{1}{6} .
\end{aligned}
$$

Again, the graph of $y=(\sinh x-x) / x^{3}$ is not particularly 'exciting':

10. Recall that in the lectures we have shown that

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

Use this to evaluate (without using L'Hôpital's Rule)
i)

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\tan \theta},
$$

ii)

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta-\tan \theta}{\theta^{3}} .
$$

Solution i) Again guided by the limits we already know write

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\tan \theta}=\lim _{\theta \rightarrow 0} \frac{\theta \cos \theta}{\sin \theta}=\lim _{\theta \rightarrow 0} \frac{\cos \theta}{\left(\frac{\sin \theta}{\theta}\right)}=\frac{\lim _{\theta \rightarrow 0} \cos \theta}{\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}},
$$

by Quotient Rule for limits, allowable since both limits exist and the limit on the denominator is non-zero. Hence

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\tan \theta}=\frac{1}{1}=1
$$

Graphically, $y=x / \tan x$ :

ii) The limit we already know from lectures is of $(\cos \theta-1) / \theta^{2}$ so write

$$
\frac{\sin \theta-\tan \theta}{\theta^{3}}=\frac{\tan \theta}{\theta}\left(\frac{\cos \theta-1}{\theta^{2}}\right) .
$$

The "trick" used in lectures to evaluate the limit of this it is to multiply top and bottom by $\cos \theta+1$ to get

$$
\begin{aligned}
\frac{\tan \theta}{\theta}\left(\frac{\cos ^{2} \theta-1}{\theta^{2}}\right) \frac{1}{\cos \theta+1} & =-\frac{\tan \theta}{\theta}\left(\frac{\sin \theta}{\theta}\right)^{2} \frac{1}{\cos \theta+1} \\
& =-\frac{1}{\cos \theta}\left(\frac{\sin \theta}{\theta}\right)^{3} \frac{1}{\cos \theta+1}
\end{aligned}
$$

Use the Product and Quotient Rules for limits to deduce

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta-\tan \theta}{\theta^{3}}=-\frac{1}{2}
$$

Graphically, $y=(\sin x-\tan x) / x^{2}$ :


